Image Reduction Using Assorted Dimensionality Reduction Techniques
نویسندگان
چکیده
Dimensionality reduction is the mapping of data from a high dimensional space to a lower dimension space such that the result obtained by analyzing the reduced dataset is a good approximation to the result obtained by analyzing the original data set. There are several dimensionality reduction approaches which include Random Projections, Principal Component Analysis, the Variance approach, LSA-Transform, the Combined and Direct approaches, and the New Random Approach. In this paper, we propose three new techniques, each of which will be a modified version of the last three techniques mentioned above (the Combined and Direct approaches, and the New Random Approach). We shall implement each of the ten reduction techniques mentioned, after which we shall use these techniques to compress various pictures. Finally, we shall compare the ten reduction techniques implemented in this paper with each other by the extent to which they preserve images.
منابع مشابه
Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملLow-Rank Signal Processing: Design, Algorithms for Dimensionality Reduction and Applications
We present a tutorial on reduced-rank signal processing, design methods and algorithms for dimensionality reduction, and cover a number of important applications. A general framework based on linear algebra and linear estimation is employed to introduce the reader to the fundamentals of reduced-rank signal processing and to describe how dimensionality reduction is performed on an observed discr...
متن کاملA Multi Linear Discriminant Analysis Method Using a Subtraction Criteria
Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...
متن کاملSemantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015